The 2008 Greentech Market Taxonomy

It is fair to say that green technology has moved beyond composting. Driven by the facts of global climate change, rising energy demand and shrinking fossil-fuel reserves, green technology has developed into a significant growth market. In 2006, green-technology companies received $3.9 billion in venture-capital investment and generated $55 billion in revenue. The year also was successful for firm exits, with green-technology companies raising $4.9 billion in IPOs -- nearly doubling 2005's record total -- and completing nearly 450 M&As. Behind this record-breaking market expansion are a widening array of technologies, processes, applications and services that are helping consumers, businesses, utilities and governments create a clean and sustainable world.

Green technology is a necessary solution to a complex problem -- generating economic growth without sacrificing the environment. Specifically, green technology is anything that seeks the efficient use of natural resources to limit or negate environmental impact while reducing costs and raising revenues, profits and value. It generates positive social, environmental and economic externalities across the entire product life cycle with innovative crossover technologies, processes, applications and services. This system constitutes a market in the broadest possible sense: The demand for a better quality of life and a healthier environment is met by a supply of innovation and capital that cuts across the industrial and knowledge economies.

Keeping track of the growing number of players and technologies is a major business challenge for green technology. The market has moved past power generation, branching out into sectors that affect nearly every aspect of modern life. Dressing, driving and eating are a few, and the list goes on. Who these technologies affect and the level at which they operate are becoming increasingly important questions for investors and entrepreneurs alike. Understanding the value of green technology requires one to understand the composition of the market.

This taxonomy represents Greentech Media's belief that green technology is understandable in an intuitive way. We have organized the green-technology market to reflect how the end user might interact with the variety of technologies, processes, applications and services flowing into the field. In the green-services sector, for instance, a homeowner might take advantage of retail PV outlets and systems integrators, while a demand-response program might make more sense for a mall or grocery store. By organizing the market in this way, and then by discussing each aspect of the market in depth, we have added a level of accessibility to the green-technology market where none previously existed. The companies we decided to include here were selected largely on the maturity of the technology. In some areas, only a handful of companies operate. In other areas, such as solar or wind, we have selected a mix of established producers and promising start ups. The company lists are not exhaustive, as new companies are entering the market almost every day.

An important aspect of the Greentech Media Taxonomy is the level of interaction we hope it will engender. The green-technology community is incredibly diverse, spanning science, business, government and you -- the end user. Though the initial taxonomy is intended as a top-down framework to structure the market, it is our hope that it will evolve with your input, criticism and comments. Our goal is to have this taxonomy develop into a folksonomy, driven as much by your knowledge as that of our analysts. We admit that the Greentech Media Taxonomy is far from complete. Instead, it is a starting point from which we plan to develop a reference point for the entire green-technology community.

Power Generation

Green-power generation sources reduce significantly the need for fossil-fuel-based electricity generation. Electricity is generated primarily by burning coal and natural gas. While these fuel sources have a lower cost per kilowatt than green-power-generation sources, this will soon cease to be the case. Many observers believe fossil-fuel production will decrease dramatically in the next half-century, and will end completely before 2100. During that period we can expect energy consumption to increase dramatically, driving up costs for fossil-fuel-generated electricity. Cost increases and the ongoing negative environmental effects caused by fossil-fuel use are driving homeowners, businesses, governments and utilities to develop and adopt green-power-generation sources.

Green-power generation is among the most advanced segments of the green-technology market. Several technologies, such as wind and solar power, are commercially available now. Ocean-power technology and hydrogen production from sulfur-deprived algae are in development and prototyping stages. Government incentive programs and a steady stream of investment capital are driving growth in this segment. Investment and research support are expected to increase to match the growing economic and environmental costs of fossil-fuel-generated electricity.

Key Components

Renewables - Renewable energy sources such as wind, water, geothermal steam, biomass and solar provide zero-emission, zero-fuel-cost power to national power grids, commercial buildings and residential units. Efficiency gains in power generation coupled with low-cost scaleable technology are driving growth in this component, and helping it to garner the largest share of investment dollars in green technology. In more established technologies such as wind and solar, investment is migrating into different parts of the supply chain as companies continue innovating to bring down capital costs. Other technologies, such as ocean power, are achieving higher rates of early stage investment, which is driven by the confluence of technology advancements and positive policy climates.

Transportation

Green transportation technologies refer to both the cars themselves and to what makes them move forward (and backward - or up and down). While vehicles are about as high up on the value chain as you can get, their key components are innovative green power sources that are lightweight, durable, high-performance and long-lasting. The trajectory of green vehicles is advancing away from fossil-fuel-only or fossil-fuel hybrid vehicles toward vehicles that use a combination of on-board electricity generation, biofuel and standalone electricity storage.

Bringing zero-emission vehicles (ZEVs) to commercial scale is dependent on increasing the storage capacity of batteries while decreasing their size and weight, increasing the availability of fuel for fuel cells and producing carbon-neutral biofuels on a level equivalent to gasoline. Growth trends in the transportation segment are all leading toward commercial-scale ZEVs. Technological issues aside, a number of growth-impeding infrastructure deficiencies exist. Funding and investment for biofuel-production facilities and distribution infrastructure are scarce, which limits the wide-scale reliability of vehicles reliant on these fuel sources.

Key Components

Energy Storage

Energy storage is the backbone of the green technology economy. Storage technologies address power-source predictability, which many believe is a significant obstacle to the widespread adoption of green power-generation technology. Green energy-storage technologies also provide sustainable solutions for consumer electronics and transportation technologies.

Storage systems are grouped by storage method. Grid-storage technology is currently used to supplement diurnal power supplies, charging from nighttime base-load power and supplementing peak power demand during the day. When providing storage for green power generation, this technique would be reversed. Storage systems would charge during the day, collecting excess solar or wind energy, and would then provide base-load power at night.

Key Components