The Battle of the LED Substrates Heats Up

Soraa, Bridgelux, and Osram battle for the LED substrate crown.

A four-way LED substrate battle is shaping up among sapphire, silicon carbide, silicon, and gallium nitride materials.

The prize is much cheaper LED chips and lighting products.

Soraa’s recent unstealthing added gallium nitride (GaN) to the active contender list with its GaN-on-GaN device. On the silicon (Si) front, Osram Opto CTO Ulrich Steegmueller presented the company's Si research at a recent lighting event. Bridgelux, also researching silicon, raised $25 million in funding from China.

There are some dark horses, including glass, germanium, and aluminum nitride (AlN).

Nitride Solutions of Wichita Kansas closed an oversubscribed $2.5 million round A this month for AlN substrates, with an ultraviolet market emphasis.

High brightness LEDs (other than red) are derivatives of gallium nitride. As with semiconductors, generally, you want to build on a stable substrate with an accurate crystal lattice, but gallium nitride is unstable and defect-ridden. The stable alternatives have a lattice spacing mismatch with the GaN and the result is shattered wafers and efficiency loss. A variety of coping techniques have evolved, such as buffer layers. (For a readable backgrounder on the topic, see here.)

The status quo is sapphire. But the cost of making LEDs out of synthetic gemstones has drawn in the other contenders.

 

Soraa is performing a bit of a head fake by not selling LEDs, shipping only a finished MR16 halogen reflector where their compact die is able to win with superior beam concentration. However, that is essentially how all LEDs compete with high pressure sodium lamps to this day. 

While we shouldn’t get ahead of ourselves, new substrates could turn some non-adapting companies into stranded whales. Cree may have a particular hazard here, with a unique, almost emotional, commitment to silicon carbide. On the principle that any new substrate will only be adopted if it has a cost or performance advantage, the battle of the substrates will, in the end, only accelerate and enhance the inevitable transition to solid-state lighting.